Showing posts with label glacier. Show all posts
Showing posts with label glacier. Show all posts

Monday, August 30, 2021

Wild Free and Happy Sample 57

 

[Note: This is the fifty-seventh sample from my rough draft of a far from finished new book, Wild, Free, & Happy.  The Search field on the right side will find words in the full contents of all rants and reviews.  These samples are not freestanding pieces.  They will be easier to understand if you start with sample 01, and follow the sequence listed HERE — if you happen to have some free time.  If you prefer audiobooks, Michael Dowd is in the process of reading and recording my book HERE.

[Continued from Climate Crisis 02 Sample 56]

Water and Climate

In The Great Acceleration, McNeill and Engelke described how a warming climate is disturbing the relationship between water and the family of life.  The precipitation patterns of the past are changing, creating new challenges for ecosystems, human societies, and life as we know it.

Extreme weather events are expected to occur more frequently.  When ocean surface temperatures get warmer, cyclones are more likely to be spawned.  Warmer air can hold more moisture.  In regions having a moist climate, clouds bloated with water are more likely to form.  More and more often, storms are dumping huge loads of rain, sudden deluges that cause destructive floods and landslides.  In regions having a dryer climate, warmer air will create fewer clouds, produce less rain, crank up the air temperature, intensify drought conditions, and encourage wildfires. 

With a warming climate, the glaciers of the world are melting and retreating more rapidly.  Winter precipitation is delivering more rain, less snow.  Winter rain tends to run off promptly.  Snowpack retains the moisture longer.  It melts later, closer to the growing season, when the water can be used to irrigate thirsty cropland. 

The water flowing out of the Himalayas feeds the Indus, Yangzi, Mekong, Ganges, Yellow, Brahmaputra, and Irrawaddy rivers.  Two billion people depend on this water arriving in adequate amounts, at the appropriate time.  In the coming years, more water shortages and major changes are expected.

Paul Ehrlich and John Harte wrote that a third of global crop production depends on irrigation.  Melting snow has been an essential source of irrigation water.  “The winter snowpack in mountainous regions such as the Himalayas, the Rockies, the Sierra, and the Andes is a most efficient reservoir, storing water through the cold months and releasing it gradually as snowmelt in warm months when farmers need it.”

“In response to severe and prolonged drought in many regions of the world, including China, India, Thailand, Italy, and California, loss of surface irrigation water has resulted in excessive pumping of groundwater, which in turn has led to land subsidence, groundwater depletion, and irreversible loss of aquifer volume.”  Food production is also challenged by droughts, deluges, super storms, heat waves, aggressive wildfires, declining insect pollinators, soil salinization, soil depletion, erosion, and so on.

Sahana Ghosh reported that the once mighty Ganges River is wheezing.  Over the years, river volume has been declining, because farmers have been diverting too much water via their irrigation canals.  The river got shallower.  Then, they switched to tube wells with motorized pumps.  Naturally, overpumping the groundwater has serious consequences.  In the dry months, the river now looks more like a mudflat.  Reduced flow also concentrates the load of pollutants.  Researcher Abhijit Mukherjee said, “Our prediction shows that about 115 million people can be impacted due to insufficient food availability in the next few decades.”

Jim Robbins wrote about the Colorado River blues.  The 1,450 mile (2,333 km) watershed starts in the Rocky Mountains and ends at the Pacific.  It used to empty into the Gulf of California, but not a single drop of water enters the Gulf today.  In 2018, river volume was just two-thirds of normal, tied for the record low.

The Colorado is one of the most heavily engineered waterways in the world — designed for the benefit of humans, not nature.  It is the source of much contention.  It serves 40 million people, and the number of users keeps growing.  A drought since 2000 has reduced its flow.  It is the most severe drought in 1,250 years.  The Lake Mead reservoir at Hoover Dam, and the Lake Powell reservoir at Glen Canyon Dam, are at all-time lows.

Some suspect that climate change is drying out the West.  This is not just a temporary drought, the West may actually be getting permanently dryer.  “Worst case, if the reservoirs ever hit ‘dead pool’ — when levels drop too low for water to be piped out — many people in the region could become climate refugees.”

Agriculture uses 80 percent of the Colorado’s water, cities use 10 percent.  As demand exceeds supply, some users will be cut off.  Dewatering agriculture would snuff out many farms and nearby towns.  Wildlife does not have a top priority. 

Frederick Pleitgen and team described an emerging water shortage crisis in the Middle East, caused by persistent drought and extreme heat.  Temperatures sometimes soar to life threatening levels.  Rainfall mostly evaporates.  Rivers, lakes, and wetlands are drying up.  As Iran’s once large and beautiful Lake Urmia shrinks, its water is getting too salty, so farmers are pumping groundwater for irrigation.  Aquifers are being overpumped, depleting the limited reserves.  If current trends continue, some regions will become uninhabitable.

Homes in Jordan receive some water once or twice a week.  Numerous upstream dams limit the amount of water that eventually arrives at the end of the watershed.  Israel has a huge water desalinization program that requires large amounts of fossil energy to operate, adding still more carbon into the atmosphere.

Agriculture and Climate

Every variety of plant and animal has different environmental requirements for optimal health.  They all have evolved to survive within a limited range of conditions.  Humans can’t survive extreme conditions, nor can the livestock and crops we depend on.  When reality is shifting into a new and unusual trend, the family of life will struggle, and some will blink out.  Evolution is not a speedy process. 

With regard to crop plants, important variables include temperature, sunlight hours, pH, available moisture, soil fertility, and so on.  As warming proceeds, the regions that have a tropical climate are expanding from their equatorial homeland toward the poles.  Regions that used to be temperate are getting hotter.  In the good old days, frigid winters used to provide beneficial pest control, by freezing lots of insects and other things that harmed crops and humans.  Winter precipitation was stored in ice and snow.

Brian Halweil emphasized how important a stable climate is to agriculture.  In 2003, for the first time, the potato blight fungus came to visit the town of Chacllabamba, Peru.  It almost totally destroyed their crop.  Located at an altitude of 13,000 feet (4,000 m), a cool climate had protected the potato fields for thousands of years.  No more.  Spuds had been their staple food.

Jerry Hatfield and John Prueger investigated how rising temperatures affected a variety of crop plants.  Extreme heat events may last a few days, and have a big impact.  When temperatures are outside of the ideal range, plant growth, pollination, and reproductive processes can be affected.  Pollination is especially sensitive to rising temperatures.  High temperatures during the reproductive phase of the life cycle can reduce corn yields by as much as 80 to 90 percent. 

When wheat is maturing, a frost can cause the grains to be sterile.  Too much heat can reduce the number of grains that form.  Rice is especially vulnerable to high heat during the pollination process.  For the major crops, yields are expected to decrease as global temperatures rise. 

Kimberly Cartier noted that growing conditions are getting less predictable than in the past.  Rainy seasons may be more intense than usual, or less.  Their arrival may be earlier than the ideal time, or later.  The El Niño-Southern Oscillation (ENSO) pattern is associated with precipitation patterns, and it is a well-known troublemaker.  In 1983, an unusual ENSO coincided with the largest global failure of corn (maize) crops in modern records.  ENSO can also alter wheat and soybean production on a global scale.

Mike Davis wrote about a horrific era of ENSO related droughts and famines.  In the years 1876-79 and 1896-1902 between 12.2 and 29.3 million died of famine in India.  In the Madras Deccan, “the only well-fed part of the local population were the pariah dogs, ‘fat as sheep,’ that feasted on the bodies of dead children.”  In the same period, between 19.5 and 30 million died of famine in China, and 2 million in Brazil.  Famine hit these three nations the hardest, but many other nations were also affected.  In the U.S., churches organized to send relief to hungry farmers in the Dakotas and western Kansas.

Samuel Markings wrote about the relationship between photosynthesis and temperature.  In plants, photosynthesis is the process that uses sunlight to transform water and CO2 into food (glucose) and oxygen.  Optimum temperatures range between 50 to 68°F (10 to 20°C).  Above this range, higher temperatures slow photosynthesis.  The process declines sharply when temps rise above 104°F (40°C).  When temps persist in this range, plant survival is endangered.

Abdul Wahid and team wrote an extensive report on heat tolerance in plants.  Each crop species has a threshold temperature.  If this temperature is exceeded too long, the result is heat stress — irreversible damage to plant growth and development.  Harm varies based on intensity (temperature in degrees), duration, and the rate at which the temperate rose.

Qunying Luo extensively described threshold temperatures for a number of major crop species.  At different stages of a plant’s life, they can be damaged by excess heat — leaf initiation, shoot growth, root growth, sowing to emergence, grain filling, etc.  For example, “Several studies found that temperatures of above 35°C (95°F) are lethal to maize pollen viability”

Tnau Agritech Portal published a report on the effects of high temperature on plant growth in India.  Each plant species has a thermal death point.  For many annual crops, 122°F (50°C) is fatal.  Excess heat can reduce yields, and inhibit the absorption and assimilation of nutrients.  It can cause pollen abortion, which reduces the grain set.  Even short exposure can affect the growth of shoots and roots. 

Evelyn Lamb wrote that rice provides 16 to 20 percent of the calories consumed by humankind.  Corn and wheat are similarly popular.  Thus, more than half of the calories consumed by humans are provided by rice, corn, and wheat.  Growing rice in flooded paddies produces more greenhouse gas emissions per calorie than corn or wheat, twice the emissions from wheat.

Santosh Koirala reported that most rice crops begin by transplanting young plants in flooded paddies (“puddling”).  “When rice is grown under puddled transplanted conditions, paddy soil becomes anoxic — depleted of dissolved oxygen — and then, in the absence of oxygen, microbes that break down plant matter produce methane.”  Puddling “is becoming less profitable because of the costs of labour, shortage of water, and high energy costs.”  It results in depletion of soil quality, and higher methane emissions.

 “Methane is the second major greenhouse gas, after carbon dioxide, and agriculture accounts for 40% of these greenhouse emissions.  Although farm animals are a major source, flooded rice paddies emit as much as 500 million tons, which is around 20% of total manmade emissions of this gas.”

Kritee Kritee and team noted that rice is a staple food for almost half of humankind, so it’s especially important to pay attention to its climate impacts.  Globally, one third of water used for irrigation goes to rice farming.  Rice receives one seventh of all fertilizer used.  “Methane from global rice cultivation currently accounts for one-half of all crop-related greenhouse gas emissions.”

Experts recommended that these methane emissions could be reduced by shifting from continuously flooded rice fields to intermittent flooding.  Unfortunately, the team was surprised to discover that this brilliant solution had an unintended consequence.  The emissions of nitrous oxide (N2O) tripled — a greenhouse gas that persists in the atmosphere much longer than methane.  It is an unintended consequence of using nitrogen rich fertilizer.

Janet Ranganathan and team wrote a hefty and thorough report filled with recommendations for reducing the environmental harm caused by high impact diets and overpopulation.  Consumption of animal-based foods is growing, and these foods (especially beef), result in higher emissions of greenhouse gases. 

Meat and dairy foods are not necessary for adequate nutrition, so less is better.  “Plant-based foods can be readily combined to provide the full set of essential amino acids, as with rice and beans or peanut butter and bread.”  The only essential not provided by a vegetarian diet is vitamin B12, which supplements can provide. 

Obesity is a growing trend, even among low-income people.  “Globally, there are now two-and-a-half times more overweight than undernourished people.  More than one in three adults are overweight.”  Folks around the world are overdoing the consumption of calories and protein. 

The Second State of the Carbon Cycle Report is a spellbinding 878 page report on the carbon cycle in North America.  I learned a very important fact of life:  “Globally, soils contain more than three times as much carbon as the atmosphere, and four and a half times more carbon than the world’s biota [living things]; therefore, even small changes in soil carbon stocks could lead to large changes in the atmospheric concentration of carbon dioxide (CO2).”

Carbon compounds are central to the existence of the entire family of life.  The CO2 that plants extract from the atmosphere allows them to live and grow.  Plants exhale oxygen that animals need, and animals exhale CO2 that plants need.  Soil is home to an amazing community of fantastic microbes.  Dead organic material contains carbon.  When it drops to the ground, soil microbes eagerly decompose it, and do so in a way that stabilizes the carbon, so it is more likely to be retained in the soil, rather than float away.  Soil microbes that encourage carbon retention do not enjoy unusual shifts in moisture or temperature.  They don’t enjoy deforestation, tilling, or being sprayed with farm chemicals. 

Livestock production is a significant source of greenhouse gases — CO2, methane, and nitrous oxide.  Ruminants include cattle, sheep, goats, elk, deer, bison, etc.  The digestive system in ruminants includes a process called enteric fermentation, which produces methane emissions (3% farts, 97% belches).  Poultry, hogs, and horses emit greenhouse gases in smaller volumes via different processes.  Manure stored in large quantities generates large emissions of methane.  Pools of deep shit contain little or no oxygen, so they provide ideal conditions for producing methane.

“Soils in North America have lost, on average, 20% to 75% of their original topsoil carbon with historical conversion to agriculture.”  Most of this conversion took place in the last 200 years or so.  To add insult to injury, “On a per-person basis, food loss and waste in North America is 375 to 500 kilograms per year.” (826 to 1,102 pounds)

Arctic Fires

Zombie fires were the subject of a BBC story.  They are also called overwintering fires or peat fires.  They occur in Russia, Canada, and Alaska.  In recent years, temperatures in the Arctic have been soaring, and permafrost has been thawing.  When tundra and forest lands dry out, they become prone to wildfires.  These fires can ignite ancient peat deposits beneath the surface.  Toasty peat can smolder all winter, beneath the snow cover.  When spring arrives, the snow melts, oxygen reaches the embers, and the fire can reignite.  They “come back from the dead,” hence the zombie tag. 

Alexandra Witze reported that in the summer of 2020, there were many Siberian tundra fires, and they emitted 244 megatons of CO2, a 35 percent increase over the intense 2019 fire season.  About half of the fires were burning on peat lands, the most carbon-dense ecosystems.  When shallow layers near the surface dry out, they are more susceptible to burning.  Warmer winters and springs mean the fire season starts sooner.  In the Arctic, the fire zone is moving northward, into lands that have traditionally been fire-resistant. 

Portia Kentish reported that the climate crisis is well underway in Arctic regions, causing huge and spooky impacts — a powerful warning to the rest of the world, which is not leaping to action.  During a May 2020 heat wave, locations in Siberia that are normally close to freezing had temperatures hotter than Athens or Rome.  Some Arctic permafrost is up to 80,000 years old.  When permafrost thaws, methane emissions begin.  Heat waves encourage wildfires.  They are burning peat deposits that have been building up for 15,000 years.  About half of Russia’s Arctic fires are consuming peat soil. 

Forest Impacts

We could sequester lots of CO2 by planting enormous numbers of trees.  That sounds wholesome.  Sadly, the current fad is deforestation — cutting enormous numbers of trees to grow soybeans, create livestock pastures, make charcoal, produce wood products, and clear the way for urban sprawl.

As the planet gets warmer, forests will become more vulnerable to pests and pathogens.  Droughts will become hotter, longer, and dryer.  This encourages wildfires.  Wikipedia is posting pages that, year by year, document wildfire activity in the world.  The report for the record breaking year of 2021 is [HERE].  As of August 19, fires had been reported in Algeria, South Africa, Cyprus, India, Israel, Russia, Turkey, France, Greece, Italy (10 regions), Canada, and United States (9 states), Argentina, and Australia.

Rodrigo Pérez Ortega reported that climate change is encouraging trees to grow fast and die young.  Research suggests that this may be universal, affecting almost all tree species and climates.  Based on tree ring analysis, this trend corresponds with the exponential growth of human caused CO2 emissions, as well as rising temperatures — a combo that stimulates rapid growth.  This reduces their potential for maximum long term CO2 absorption. 

Nate McDowell and team studied changing forests.  “Shifts in forest dynamics are already occurring, and the emerging pattern is that global forests are tending toward younger stands with faster turnover as old-growth forest with stable dynamics are dwindling.”  These shifts are occurring because of “anthropogenic-driven exacerbation of chronic drivers, such as rising temperature and CO2, and increasing transient disturbances, including wildfire, drought, windthrow, biotic attack, and land-use change.”  Their findings indicate that it is “highly likely that tree mortality rates will continue to increase.” 

Robert Hunziker reported on new information linking rising temperatures with the increase in tree deaths.  In the U.S., giant sequoias are dying from the top down.  In the Southwest, drought has killed hundreds of millions of trees.  In Africa, 2,000 year old baobab trees are wheezing and dying.  In Germany, dead trees are everywhere.  Dead and dying trees are more vulnerable to insects and disease.  They provide abundant fuel for forest fires.  Siberia is burning up.  “New studies show drought and heat waves will cause massive die-offs, killing most trees alive today.” 

Dahr Jamail visited Glacier National Park, home to a formerly thriving boreal forest.  A warming climate has delighted millions of hungry pine bark beetles, some of whom can now have two life cycles per year.  In the last 20 years, beetles have killed 40 million acres (16 million ha) of trees.  They kill fewer pines now, because fewer pines remain alive.  The latest serial killer is white pine blister rust, which has infected almost 85 percent of the trees in the park.

Songlin Fei and team studied how insects and diseases are hammering U.S. forests, which are now home to more than 450 nonnative tree-feeding insects and tree pathogens.  The study focused on the 15 most destructive nonnative forest pests.  It found that “41.1% of the total live forest biomass in the conterminous United States is at risk of future loss from these 15 pests.  These results indicate that forest pest invasions, driven primarily by globalization, represent a huge risk to U.S. forests and have significant impacts on carbon dynamics.” 

Peter Wohlleben shared his intimate knowledge of the trees in his beloved German forest.  Trees can’t walk, but forests are always slowly wandering.  Since the end of the last ice age, a warming climate has enabled the trees of central Europe to gradually migrate northward.  Animals and winds move seeds away from their source.  Today, the climate is warming way too fast, which presents a mortal threat to temperature sensitive species.  Human tree huggers are working to relocate and transplant as many types of trees as possible.  Assisted migration is a heroic effort to “help forests walk.”

Climate and Disease

The climate crisis is not expected to promote miraculous advances in the health of humankind.  The huge herd is moving into an era of food insecurity, power shortages, water scarcity, poor sanitation, infectious diseases, deteriorating medical care systems, and so on.  A hotter climate and extreme weather events will add to these challenges.

The Lancet’s 2020 report presented a competent 42 page discussion on the climate change impacts on health.  Warming trends are increasing the frequency and intensity of floods, drought, storms, wildfire, temperature anomalies, and food scarcity.  These changes are killing more folks in the 65+ age range.  In 2018, heat waves killed about 296,000 people.

“The climate suitability for infectious disease transmission has been growing rapidly since the 1950s.”  The dengue virus is spreading across South America.  “From 1950 to 2018, the global climate suitability for the transmission of dengue increased by 8.9% for Aedes aegypti and 15% for Aedes albopictus.  In 2015 to 2019, suitability for malaria transmission in highland areas was 38.7% higher in the African region and 149.7% higher in the Western Pacific region compared with a 1950s baseline.”

David Wallace-Wells added that malaria also thrives in hotter regions because “for every degree increase in temperature, the parasite reproduces ten times faster.”  Consequently, by 2050, up to 5.2 billion people may be infected, according to World Bank estimates.  As tropical climates move northward, so will tropical pathogens.

Tipping Points

A tipping point in an ecosystem is a threshold that, when exceeded, can lead to large changes.  Sometimes an imbalance can reach a level of intensity that triggers an irreversible cascade of events, like a chain reaction of falling dominoes.  The climate crisis is a momentous tipping point in the human saga.  Melting Arctic ice has busted loose an avalanche of devastating changes.  Clever humans, with all their gee-whiz technology, are powerless to refreeze the Arctic, halt the avalanche, put the carbon back where it came from, and make everything nice again.

Over the millennia, high impact cultures have increasingly evolved into aggressive control freaks, radically manipulating ecosystems to satisfy their impulsive whims.  They are unencumbered by foresight, and display little respect for the family of life and the generations yet to come. 

For a very long time, their enthusiastic cleverness usually didn’t slam head-on into devastating limits.  They kept nature on a short leash, and brutally abused her.  The game is different now.  We’ve created changes that threaten our survival, changes we can’t undo.  We are no longer in the driver’s seat. 

Nature has put a tight leash around our necks, and we’re about to discover what it’s like to be powerless, kicked, and beaten.  Mistakes indeed have consequences (ouch!).  Our seat in the family of life is not a throne.  We are not the Crown of Creation.  We’re often more like hyperactive children who get completely lost, confused, and anxious.

Many folks who deliberately pay acute attention to reality are totally spooked.  These hyper alert folks have developed a special ability to comprehend the obvious — we’re in the <bleeping> express lane to surprising changes.  Many of them seem to perceive tipping points to be elements of a remarkable cosmic drama.  Tipping points are fire-breathing dragons that we must heroically slay in order avert runaway warming, and a hellish ecological apocalypse called Hothouse Earth.  

The alert ones are jumping up and down and shouting about tipping points, in a desperate frantic effort to wake up the clueless billions.  Dudes!  It’s time for action!  We only have ten years to fix this mess!  It’s not too late!  The presumption is that the mess is a solvable problem.  We are heavily indoctrinated with the illusion that technology can overcome any challenge. 

At the same time, the titans of industry assure us that they are ready and eager to sell us the miracles we need: electric cars, solar panels, wind turbines — clean green energy, and a prosperous economy that will grow until the end of time!  We can simply shop our way to a better tomorrow.  Everything will be OK.  Think happy thoughts.  Hope will save the world.

Will electric cars will be so cool that the Arctic ice refreezes?  Will the glaciers rise and shine again?  Will green energy be so cool that the permafrost stops thawing, and the methane seeps go back to sleep?  Is learning how to walk as hard as they say?  To learn more about tipping points, check out Fred Pearce, Timothy Lenton, Katharyn Duffy, and Will Steffen. 

[Continued in Climate Crisis 04, Sample 58]

Wednesday, April 7, 2021

The End of Ice


 

The Climate Crisis is alive and thriving, a persistent embarrassing bummer that refuses to be wished away.  It is, by far, the biggest threat we’ve faced in the entire human saga.  We are, by far, the most unusual animals in the world, and we’ve bumbled and stumbled into a “deer in the headlights” situation of complete vulnerability.  The Climate Crisis shrugs with indifference, and faithfully serves us what we’ve ordered… rough justice.

In human society, there is a modest level of agreement that the crisis is real and intensifying.  There is vigorous disagreement over how severe the crisis may become, how quickly it may proceed, and whether there is anything non-idiotic we can do to soften impacts on the ecosystem.

Projections of long-term climate trends are based on computer models designed to predict how massively-complex natural processes are likely to interact over time, and how the consequences will affect life as we know it.  “Every single worst-case prediction made by the Intergovernmental Panel on Climate Change (IPCC) about the rise in temperatures, extreme weather, sea levels, and the increasing CO2 content in the atmosphere have fallen short of reality,” wrote climate journalist Dahr Jamail.

Following this rapidly moving field of knowledge is not easy, because it’s a whirlwind of arguing experts, misinformation, hard truths, and shameless marketing gibberish.  The hard truths rarely appear in the daily headlines because they do not boost ratings, delight advertisers, or nurture consumer confidence.  Consumers are constantly fed steaming balderdash about progress and miracles.  Students might hear mild truths, if any (don’t scare the children!).  Many of the hard truth discussions are written for an audience of scientists, not general readers.  

Dahr Jamail is a journalist who is good at translating perplexing techno-jabber into ordinary English.  He is a Texas-born, fourth generation Lebanese-American.  In 1996, he moved to Alaska, where he got into mountain climbing.  As the years passed, he could see that the glaciers were melting and retreating.  The world was changing, and not in a good way.  In 2003, the fates called him to become a war correspondent in Iraq and Afghanistan.  In 2010, the BP disaster in the Gulf of Mexico seized his full attention, and he began covering the world war on our home, Earth.

Since then, he’s travelled extensively, visited highly impacted regions, chatted with locals, and received a full immersion baptism in bullshit-free reality.  He’s written more than a hundred climate stories.  In 2019, he published The End of Ice, a combo of fascinating travel journal, terrifying horror story, and voyage of personal growth.  The book allows readers to see and feel the painful changes that are taking place, from the perspective of direct, feet on the ground, experience.  Jamail is passionately interested in helping people understand the Climate Crisis.  Ignorance is curable.

In Brazil, he was amazed by the Amazon rainforest.  About one percent of the incoming sunlight makes it through the dense green canopy.  It’s always warm, and close to 100 percent humidity.  There isn’t much difference between day and night, or winter and summer.  The birdsong symphony is amazing.  Scientists have barely begun discovering the fantastic biodiversity of this rainforest.  A 25 day expedition discovered 80 new species.  Because of the rapid rate of destruction, countless species will go extinct before we learn of their existence.

This forest used to sequester carbon.  Now, because of drought, fires, clear-cuts, and development, it’s releasing more carbon than all of the traffic in the U.S.  Biologists who are overwhelmed by the stunning magnificence of the Amazon are deeply pained by the massive mindless destruction, and by the cold indifference of the world.  People have no connection to the planet, no connection with anything.

A week after leaving the Amazon, Jamail arrived in the Inupiat village of Utqiagvik, Alaska (formerly Barrow), on the Arctic Ocean.  The modern town is located east of the original village, which is decomposing, and collapsing into the sea.  The waves will eventually wash away modern Utqiagvik too.  Residents say that winters have been getting much shorter and warmer.  The sea ice is thinning, breaking up, and retreating.  Polar bears are gone. 

A gravedigger said that in the past, solid permafrost was just 10 to 12 inches (25 to 30 cm) below the surface.  Digging a grave took three days of strenuous chopping.  Now, it only takes five hours or less.  There are enormous deposits of permafrost scattered across the northern hemisphere.  As permafrost thaws, it softens and the land sinks.  In the thawing process, methane is released.  In 2017, enormous methane craters began blowing open on Siberia’s Yamal Peninsula, and in Canada’s Northwest Territories.  Big trouble is just getting warmed up.

NOTE: With warming, glaciers and ice “melt,” and permafrost deposits “thaw.”  To avoid looking like a dolt, never forget this!

Jamail visited Glacier National Park, home to a formerly thriving boreal forest.  A warming climate has delighted millions of hungry beetles, some of whom can now have two life cycles per year.  In the last 20 years, beetles have killed 40 million acres (16 million ha) of trees.  They kill fewer trees now, because fewer trees remain alive.  The latest serial killer is white pine blister rust, which has infected almost 85 percent of the trees in the park.

Another stop was Australia’s Great Barrier Reef, which is busy dying.  Because of warming and ocean acidification, most of the world’s coral will be gone by 2050.  Oceans are absorbing more than 30 percent of the CO2 that humans emit.  Carbon in the water promotes the formation of carbonic acid, which is harmful to coral, mollusks, and some types of plankton.  Phytoplankton are tiny water plants that generate half of the planet’s oxygen supply.  All of my best friends are chronic oxygen addicts.

Florida is a state that should learn how to swim.  In the southern region, there are four national parks that “will be underwater in my lifetime.”  Sea level is rising because ice is rapidly melting, and because warming seawater expands in volume.  Salt water will eventually infiltrate the Florida freshwater aquifer.  Miami’s drainage system was designed to operate by gravity.  Rising sea levels and tides now prohibit the system from fully draining.  Many homes in South Miami are on septic systems.  These only work when they are above the water table.  When this is not the case, bathtubs fill with raw sewage — a delightful surprise!

Anyway, zooming out to the bigger picture, current trends do not suggest that we are hippity-hopping down the golden path to a brighter future.  “The last time there was this much carbon dioxide in the atmosphere was three million years ago, when temperatures were as high as they are expected to be in 2050, and sea levels were 70 feet (21 m) higher than they are today.”  Back in those days there were trees growing on the South Pole.

“Even if we immediately stopped all greenhouse emissions, it would take another 25,000 years for the CO2 now in the atmosphere to be absorbed into the oceans.”  So, the ice will continue melting, the seas will continue absorbing heat, the climate will continue warming, and the planet’s ecosystems will continue taking a merciless catastrophic beating.  Ignorance pandemics don’t <bleep> around.

As readers move into the book’s homestretch, Jamail stops storytelling and looks them directly in the eye.  It’s time for some heart-to-heart communication.  Writing this book has been very painful.  The folks he wrote about were not extremists, lunatics, or liars.  In addition to his travels and interviews, he’s spent lots of time gathering additional information online.  Paying close attention to eco-reality, year after year, is a miserable path.

Writers are often inspired by the hope that the work they do can inspire beneficial change.  They hope that readers will see the light if blasted with a firehose of truth.  Well, the world often enjoys taking long hard pisses on hope-filled dreams.  It laughs at their grandiose hope in promoting real transformation.  And so, the spurned dreamer hopes even harder.  Eventually, Jamail wondered if there was any point in writing.

Hope is a turd in the swimming pool.  Hope can’t undo the damage, or send the carbon back home, or resurrect the extinct, or make people care.  The worst is yet to come.  It’s time for grieving not hoping.  Jamail took a nose dive into a deep depression, and eventually emerged hope-free, a great healing.  He is now able to be present in reality, in the fullness of the darkness.  He learned that it is possible for acceptance and inner peace to reside in the same heart with grief and suffering.  “I have never felt more alive.”

 Jamail, Dahr, The End of Ice, The New Press, New York, 2019.  


Monday, July 15, 2019

Wild Free and Happy Sample 19


[Note: This is the nineteenth sample from my rough draft of a far from finished new book, Wild, Free, & Happy.  I don’t plan on reviewing more books for a while.  My blog is home to reviews of 201 books, and you are very welcome to explore them.  The Search field on the right side will find words in the full contents of all rants and reviews, if you are interested in specific authors, titles, or subjects.] 

Climate Shifts?

So, what caused megafauna extinctions?  The two primary suspects in this mystery are hominin hunters and climate change.  After numerous rowdy fistfights at scholarly conferences, the overhunting theory has become the most widely accepted.  Quite a few still believe climate change was a secondary factor, because the swings between hot eras and frosty ones could cause substantial shifts in a habitat’s vegetation.  When tundra became forest, mammoths no longer lived in paradise.  Their numbers likely declined, and their groups could have become more isolated.

When the climate warmed, hippos and monkeys migrated into Europe, joining the woodland rhinos, elephants, boars, and deer.  Tundra became boreal forest, and the cold adapted critters no longer enjoyed optimal conditions.  This could have weakened them, and made them more vulnerable to hungry hominin hunters. 

Then, when temperatures dropped, ice sheets advanced again, and the good old days ended for the warmth loving critters.  Woodlands were displaced by tundra and taiga — good habitat for lemmings, arctic foxes, reindeer, woolly mammoths, and woolly rhinos. 

Peter Ungar discussed research in Greenland, where scientists bored deep into the thick 150,000 year old ice sheet.  In the ice core samples, the annual layers of ice buildup contained details about climate trends.  Patterns could remain stable for thousands of years, and then suddenly change.  The emergence of agriculture and civilization only became possible with the arrival of the current, unusually long warming trend, which began about 11,600 years ago.  It followed a 1,200 year stretch of intense cold.  The transition from intense cold to the modern warm trend occurred during one lifetime.  A lass who was born in an arid tundra would see the land transform into a young forest by the time her hair was gray.

Now, gaze at the globe on your desk.  As Earth makes its annual joyride around the sun, its axis tips.  When the northern hemisphere tips closer to the sun, it’s summer time.  Six months later, summer begins in the southern hemisphere, and winter arrives up north.  The regions close to the equator consistently receive the most solar energy throughout the year, so they are Earth’s warmest — the tropics.  Both the North Pole and the South Pole get the least solar energy, so they are icy year-round. 

On your globe, note that most dry land regions on the planet are north of the equator.  Also, at the top of the world, the northern edges of North America, Europe, and Asia extend into the Arctic Circle.  Consequently, the northern hemisphere has experienced a number of intense glaciation cycles.

The southern hemisphere has far less dry land, and far more ocean area.  The surrounding oceans retain heat, and encourage a more moderate climate.  In the southern hemisphere, the bottom edges of South America, Africa, and Australasia do not come close to the Antarctic Circle.  For these reasons, glaciation events have been less extensive.

The Last Glacial Maximum (LGM) was the frigid peak of the most recent glacial cycle.  Ice sheets began growing about 33,000 years ago.  Glaciation peaked between 26,500 and 19,000 years ago.  Large regions of northern Europe, Asia, and North America were buried under ice sheets up to one mile (1.6 km) thick.  During the LGM, climate conditions were similar across these northern regions.  Glaciers retained so much frozen water that sea levels were 410 feet (125 m) lower than today.  A lass could walk from Ireland to Scandinavia or France without getting her feet wet. 

Bernardo Araujo’s team studied up-to-date climate models for the last 122,500 years.  For 19 regions, they compared the dates when humans arrived, with the dates when megafauna species went extinct.  They found that humans were entering Europe and Central Russia about 45,000 years ago.  In the colonized regions of Eurasia, extinction dates began about 40,000 years ago, and continued until about 10,000 years ago — the longest of the megafauna extinction cycles outside of Africa.

Araujo emphasized that our colonization of Eurasia was a significant turning point in the human colonization of the planet.  It was the first time that our fully tropical species was moving into regions that were colder than the conditions for which evolution had fine-tuned us.  It was far more challenging for humans to survive in snow country.

Fernando Fernandez also found no connection between climate patterns and extinctions.  He wrote that there were essentially two pulses of extinctions in Eurasia.  The first pulse was from 45,000 to 20,000 years ago, across the southern latitudes.  The second pulse was from 14,000 to 9,000 years ago, in the northern latitudes.

In North America, Fernandez reported a much quicker extinction spasm.  It mostly occurred between 13,500 and 11,000 years ago.  Experts still disagree when humans arrived on the continent, suggesting dates ranging from 20,000 to 13,000 years ago.  By the time humans entered North America, they had developed effective tools and strategies for succeeding in snow country, making a faster dispersal possible.  South American extinctions were mostly between 13,000 and 7,800 years ago.

Fernandez presented a list of arguments why climate change was not the primary cause of megafauna extinctions.  Climate swings affected the whole planet, but the extinction spasms occurred at widely different times, in different places — not everywhere at the same time.  The timing of extinctions does not closely correspond to the timing of glacial cycles.  Preceding the megafauna extinction spasms were 31 earlier glacial cycles which wiped out few if any species. 

Extinctions occurred first on continental mainlands, while species on isolated islands in the same region, with the same climate, survived much longer.  When extinctions took place in a region, there is no evidence that plant species were zapped by temperature swings at the same time.  It was the large animals that blinked out (the preferred game of hunters).  Small animals did not vanish in the same era (like they might have during a climate shift).  He did say that glacial cycles could have stressed ecosystems, making some species less resilient.

Baz Edmeades noted that most of Africa lies between the Tropic of Cancer and the Tropic of Capricorn, the equatorial belt.  When there were extinction spasms in the equatorial belt, there was no rise of extinctions in regions where hominins had not yet arrived.  The extinctions were limited to Africa and southern Asia — tropical regions where hominins resided.

OK!  So, based on what I know today, I am convinced that climate change was not the primary cause of megafauna extinctions.  I am also thoroughly convinced that the pattern of extinction spasms was closely related to the early emergence of advanced hominins in Africa, and to the later pattern of world colonization by humans.

I remain befuddled by one mystery.  During the North America extinction spasm, most of the megafauna species that survived were not indigenous. They were immigrants from the Old World, like moose, bison, caribou, elk, deer, grizzly bears, black bears.  Indigenous megafauna got hammered.  Super-speedy pronghorn antelope were among the few to escape extinction.  The implication here is that the Old World megafauna immigrants had arrived at about the same time as the Siberian hunters, and these foreigners were fully aware that humans were dangerous murderers — run!  I was not able to find information confirming that “about the same time” is true.

William Stolzenberg presented a different twist.  He shared a fascinating story about Joel Berger.  Early in the twenty-first century, when Berger was working near the Teton Range of Wyoming, wolves from Yellowstone began wandering back into the region.  They had been absent for 50 years, victims of a predator eradication project.  For 50 years, moose and elk had not been bothered by serious predators.  Berger freaked out.  He tried scaring the moose with wolf calls and scents.  No response.  They had completely forgotten their natural fear of wolves.  So, the wolves casually walked past the clueless moose mothers, and hauled away their calves.  Eventually moose learned that wolves were dangerous.

Global Serengeti

Baz Edmeades grew up in South Africa, where he enjoyed observing the remnants of African megafauna at Kruger National Park.  His deep interest in archaeology and evolution led him to read Björn Kurtén’s book on Pleistocene Europe.  He was shocked to discover that 15,000 years ago, hyenas, leopards, and lions roamed Europe, and they closely resembled the animals he watched in Africa.  Woolly rhinos and mammoths had cousins at Kruger.  Not that long ago, large animals were incredibly abundant.  Grassland regions of Europe were once a wildlife wonderland, like Africa’s Serengeti.

North and South America also had Serengeti-like grassland regions.  Dan Flores wrote that the Great Plains used to be home to many species of large mammals, none of which had evolved adaptations for living near packs of aggressive bloodthirsty tropical primates with spears, dogs, and fire.  Many blinked out.  Five hundred years ago, when European colonists began arriving in great numbers, with highly advanced technology, life on the American Serengeti got blindsided with astonishing speed and efficiency.

Today, many documentaries and nature programs present images of the African megafauna that still survive in protected areas, like the Serengeti.  These images of lions, zebras, giraffes, and baboons inspire astonishment among the wretched mobs trapped in sprawling, grungy, concrete landfills like New York City or London.  But, compared to the Serengeti of 2 million years ago, the twenty-first century Serengeti is much diminished.

Two million years ago, all the other continents were also astonishing Serengetis.  Earth was one big wonderful celebration of abundant life.  The critters of every ecosystem had coevolved with each other, resulting in functional relationships between the eaters and the eaten.  Loose cannon critters were not yet molesting the sacred dance.  Today, of course, a hurricane of swarming tropical primates has reduced Planet Serengeti to Planet Train Wreck.

It’s heartbreaking to comprehend that this staggering tragedy was driven by the innocent unintended consequences of thousands of years of gradually accumulating more and more clever innovations.  Today, the rate of extinctions is in the stratosphere.  Innovation and technology have given us the ability to thoroughly obliterate healthy ecosystems faster than ever before.  We call this “progress,” one of our god words.  Another one is “growth.”

In North America, when humans arrived, there were at least nine species of big cats, and seven species of elephants.  The biodiversity was incredible — beavers as big as bears, two-ton buffaloes, armadillos the size of VW Beetles

Mammoths emerged in South Africa about five million years ago.  By 2.6 million years ago, they had spread across Eurasia and North America.  Around 190,000 years ago, all mammoths in Europe had evolved the woolly look.  Until 14,000 years ago, mammoth country ranged from Western Europe to Siberia to New England to Mexico.  The last mammoths survived until about 3,700 years ago, on Wrangel Island, off the coast of Siberia.

Aurochs once ranged from England to Korea, and south to India and North Africa.  Rhinos once ranged from Africa to Europe to Sumatra.  Leopard country spanned from southern Africa to England, to Java.  Short-faced hyenas were as big as lions, and their addresses included India, China, Transvaal, and Europe.  And on and on….

Tim Flannery mentioned Neanderthals, who had significantly larger brains than humans.  They were long-time residents of Eurasia that had coevolved with the other large animals.  For hundreds of thousands of years, they coexisted with mammoths, straight-tusked woodland elephants, and two species of woodland rhinoceros.  Scholars tend to regard Neanderthals as dullards.  Ecological stability is not a sign of pathological intelligence.

Mother Africa

Around 5 million years ago, the climate in Africa was getting cooler and dryer, forest area was being displaced by expanding savannah.  The ancestors of hominins learned ways to survive in the changing conditions.  Our hominin ancestors were bipedal at least 3.6 million years ago.  Somewhere around 2.5 million years ago, the climate in Africa once again entered a cooler and dryer pattern. 

By this time, our hominin ancestors were getting better adapted to savannah living.  They were bigger and smarter, using stone tools.  They may have been cooking with domesticated fire, but we’ll never know when the first fire was kindled.  As previously mentioned, hominin evolution was influenced by having the ability to regularly dine on cooked food, which significantly tweaked the design of our teeth and digestive tracts.  This implies that domesticated fire appeared early in the game.

The series of megafauna extinctions that occurred during the hominin era began in Mother Africa.  Lars Werdelin, an expert on ancient carnivores, wrote that beginning around 2 million years ago, large carnivore species began to gradually decline.  Hominins were becoming regular hunters, and they were eating more meat.  Carnivore extinctions accelerated around 1.5 million years ago.  Coincidentally, Homo erectus emerged around 1.5 million years ago.   Erectus was the first advanced hominin, having a brain larger than average for its body size.  This era corresponds to the oldest known evidence of domesticated fire.  Today, only two percent of the original African large carnivore species still survive.

Werdelin assumed that hominins were not deliberately hunting large carnivores, which would have been insanely dangerous.  The extinctions were likely due to a decline in herbivores — the prey that carnivores depended on.  Was climate change reducing the forage that herbivores required for survival?  Small carnivores were not in decline, which would have been the case if ecosystems were being walloped by a climate shift.  Werdelin believes that hominins had become successful competitors for the traditional carnivores, both of whom were eager to dine on the same prey. 

Baz Edmeades noted that the African continent was loaded with megafauna 1.8 million years ago, but many were gone by 1.4 million years ago.  In the good old days, Africa had nine species of big cats (three today), up to nine species of elephants (one today), and at least four types of hippos (one today).  There were giant antelopes, giant hyenas, giant pigs, giant monkeys, giant baboons, and many others — all gone.  Over the course of many thousands of years, the consequences of hunting just a bit too hard accumulated. 

Some species that disappeared in Africa continued to survive on other continents.  Edmeades emphasized that during the African wave of extinctions, there were no corresponding extinction blips in Siberia, Europe, Australia, or the Americas.  In these other regions, most megafauna species thrived for another million years.  A jury would not convict climate change for the extinctions in Africa.

Wednesday, November 25, 2015

Grizzly Years


Doug Peacock grew up in rural northern Michigan.  As a boy, he spent a lot of time alone outdoors, exploring the woods, swamps, and streams.  Later, he fell in love with the West, especially the Rockies.  He enjoyed fishing and rock climbing.  His plan was to become a geologist, so he could wander around in the great outdoors and get paid for it.  But one day he realized that his dream career would likely involve working for oil and mining companies, “whose rape of wild country repelled me.”  Sadly, he abandoned the plan, and volunteered for an exciting job with the U.S. government.

Peacock loved the central highlands of Vietnam.  It was a gorgeous region, inhabited by good people.  Then, the war spread there.  He was employed as a medic in the Green Berets, an elite combat unit.  His job was to provide first aid to injured soldiers and villagers, and the fighting kept him very busy.  He witnessed far too much senseless death, destruction, and suffering, far too many dead children.

By and by, he came down with a devastating case of war rage, which he has been struggling with for most of his life.  Back in American society, it was no longer possible to blend into the crowd, and feel at home.  He couldn’t talk to his family.  He spent a lot of time in the woods, trying to pickle his demons with cheap wine.  Finally, he bought a jeep, and headed west, to pursue two powerful medicines: solitude and wildness.

For American soldiers, Vietnam was not as safe and secure as strolling through a shopping mall.  There were tigers, vipers, snipers, booby traps, and Vietcong.  The odds for survival were boosted by good luck, common sense, being with experienced warriors, remaining as silent and invisible as possible, and maintaining a state of heightened awareness.  Survivors slept lightly, easily awakened by snapping twigs and other irregular sounds.  Survivors developed an acute sense of smell, because an odd whiff could warn of danger.  Survivors frequently stopped, looked, and listened.

Similar skills were useful when moving through grizzly bear country, where Peacock spent many post-war years.  Near the beginning of his wilderness quest, he hiked around a corner and discovered that a large brown grizzly was approaching, and it was not at all happy to see him.  The bear’s head was swinging back and forth, jaws gnashing, ears flattened, hair standing up on his hump — the ritual that precedes charging, mauling, and a bloody hot lunch.

Peacock slowly pulled out his large caliber handgun, had second thoughts, and lowered it.  His shooting days were over.  He was ready to die.  Something happened, the energy changed.  “The grizzly slowly turned away from me with grace and dignity and swung into the timber at the end of the meadow.”  It was a life-changing experience.  He became a grizzly tracker.  He acquired a movie camera and began filming them.  He did winter lecture tours, wrote about bears, and told his story in Grizzly Years.

Importantly, the book reminds us of a forgotten reality, living in wild country amidst man-eating predators — the normal everyday reality for our wild ancestors, whose genes we inherited.  Outside my window each morning, the blue jays stop by for a pumpkin seed breakfast.  Before they glide down from branch to porch, they look in every direction for winged predators and pussy cats.  They don’t live in a constant state of fear and paranoia, they simply live with prudent caution, look before leaping, and never do stupid things.

In grizzly country, Peacock stayed away from animal trails, and slept in concealed locations.  He tried to remain invisible and silent.  He tried to approach bears from downwind, so his scent would not alert them.  He spent years studying bear behavior, and the quirks of individual animals.  He was charged many times, but never mauled.  He learned how to behave properly during close encounters.  Never run, climb trees, make loud noises, move suddenly, or look weak and fearful.  Instead, act dignified, and display peaceful intentions without appearing docile.  Calmly talk to the bear, while keeping your head turned to the side.

Peacock’s tales are precious, because they encourage readers to imagine wilderness as their true home, and to contemplate the normal everyday tactics used by our wild ancestors to avoid being eaten.  Grizzly country was one place where humans were not the dominant critter.  The bears could kill you and eat you whenever they wished.  This ongoing possibility freed Peacock from wasting hour after hour in self-indulgence — thinking, analyzing, daydreaming.  It demanded that he always pay acute attention to the here and now.

Americans expect wilderness to be as safe as a mall.  We don’t want to be killed and eaten when visiting a national park, yet parks foolishly build trails and campgrounds in high-risk locations.  If a hiker is mauled, bears are killed.  Now, if a cat kills a blue jay, we don’t kill the cat.  In automobile country, the streets are lined with busy enterprises selling chunks of dead animals.  So, why are government bureaucrats so uptight about what God-fearing American bears choose to have for dinner in the privacy of their own homes?  Why do delicious primates from Chicago expect to be safe in grizzly country?

I’ve never seen a “Save the Grizzlies” bumper sticker.  To maintain a pleasant Disneyland experience, and avoid lawsuits, the Park Service kills aggressive bears, and bears that beg for snacks.  Backcountry outfitters kill them.  Ranchers kill them.  Violators get light punishment from judges in redneck country.  Bear numbers are in decline, and this infuriates Peacock.

In Vietnam, he had a ringside seat at a contest between a full-blown industrial civilization and a society that practiced muscle-powered subsistence farming.  He witnessed the indiscriminant massacre of countless innocent villagers and children.  Back in the U.S., he saw that the same monster was obliterating western ecosystems, from mines in the Rockies, to developers in Tucson.  He had escaped from the Vietnam War, but there was no escape from the American war on America, where “greedy scumsuckers” were raping and desecrating “the last refuge of sanity on the planet.”

Peacock wasn’t the only Vietnam vet with war rage who found sanctuary in the mountains.  Other vets were equally pissed at the scumsuckers.  They had lost many friends while defending the freedom and democracy of God’s most cherished nation.  And so, in those mountains, angry American vets defended the sacred American ecosystem against the atrocities of the “syphilization” they had been trained to serve.  When loggers built bridges that had not been authorized by the angry vets, the bridges were mysteriously demolished.  So were helicopters used for oil exploration.

Peacock did not become a corporate geologist, and spend the rest of his life shopping with the herd.  It was a great gift to live so many years outside the walls.  He was able to observe the insane monster that lurks behind the cartoonish façade of the American Dream, and he was able to explain the horrors that so many folks inside the walls were unable to see, feel, or imagine.  In wild country, Peacock was careful to never be seen, or reveal his plans.  “If I got into serious trouble, I didn’t want to be rescued.  My considerable carcass could feed the bears.”

Lots of additional information can be found at his website.  He’s also the star of numerous YouTube lectures and interviews.

Peacock, Doug, Grizzly Years — In Search of the American Wilderness, Henry Holt and Company, New York, 2011.  [Originally 1990]

Friday, August 1, 2014

The Collapse of Western Civilization


Naomi Oreskes and Erik Conway are science historians, and they are hopping mad at folks who deny that humans are the primary cause of climate change.  Their outrage inspired them to write The Collapse of Western Civilization, which has been selling furiously in its first month on the market.  It’s a 112-page science fiction rant.

The story is a discourse on the Penumbral Age (1988-2093), written in 2393 by a Chinese historian.  The Penumbral Age was a time of paralyzing anti-intellectualism, when humankind failed to take action on an emerging climate catastrophe, which ended up sinking western civilization.  In presenting this story, the authors are rubbing the denialists’ noses in the steaming mess they created, similar to the process of housebreaking a crappy puppy.

By 1988, scientists could clearly see the approach of a huge storm, and they dutifully reported their findings.  They believed that once the public was informed, they would rationally do what needed to be done.  But the public shrugged, and the scientists were too dignified to run out into the streets, jump up and down, and scream warnings.  Also, the scientists were too conservative — temperatures ended up rising far more than they had predicted. 

Early in the twenty-first century, many more people could see the storm, but still nothing was done.  A dark villain moved to center stage — the carbon-combustion complex, a disgusting mob of slimy creeps who made a lot of money in activities dependent on burning fossil fuel.  They created think tanks that hurled excrement and insults at the annoying climate scientists.  Screw-brained economists hissed that government should take a long nap and let the invisible hand of the market magically make the bad stuff go away.  (My favorite line is, “The invisible hand never picks up the check.”)

And so, in a heavy fog of mixed messages, everyone resumed staring at their cell phones, and the world went to heck.  There were terrible storms and droughts.  The ice caps melted, and this opened the floodgates to the Great Collapse (2073 to 2093), when sea levels were eight meters higher (26 ft.).  Twenty percent of humankind was forced to move to higher ground during the Great Migration, about 1.5 billion people.  Thus, 100 percent of humankind would have been 7.5 billion — in 2073 — an amazingly high number!

I just let the cat out of the bag.  This book is a gusher of intoxicating hope and optimism.  While the Great Collapse blindsided the hopelessly rotten governments of the west, China did OK.  The wise leaders of the Second People’s Republic of China maintained a strong central government, free of corruption.  When sea levels rose, they quickly built new cities inland, in safe locations.  When leaders have integrity, miracles happen.

And it gets better.  In 2090, a female scientist in Japan created a GMO fungus that gobbled up the greenhouse gas doo-doo, the storm passed, and the survivors lived happily ever after.  Unfortunately, by that time, there was a total dieoff in Africa and Australia.  Luckily, the northern folks, who contributed heavily to the disaster, survived (minus the polar bears).

The authors note that it’s now too late to halt climate change; it’s time for damage control.  The whole thing could have been prevented if only we had rapidly shifted to non-carbon-based energy sources.  Really?  No expert with both oars in the water believes that renewable energy could ever replace more than a small portion of the energy we currently produce from non-renewable fuels.  If we phased out the extraction of fossil energy, our way of life would go belly up.  The status quo is a dead end, and rational change provides few benefits when it’s a hundred years too late.

Solar panels and wind turbines are not made of pixie dust, rainbows, and good vibes.  They are produced by high-impact industrial processes.  They require the consumption of non-renewable resources.  They produce energy that is used to temporarily keep an extremely unsustainable society on life support.  Hydropower dams are ecological train wrecks.  The authors lament that carbon-free nuclear energy became unhip because of a few wee boo-boos.

The book gives high praise to the precautionary principle, which is old-fashioned common sense with a spiffy title.  If you see an emerging problem, nip it in the bud.  If a new technology is not perceived to be 100 percent safe by a consensus of scientists, forget about it until its safety can be proven beyond all doubt.  Duh!  Common sense says that humankind made a huge mistake by ignoring the warnings of scientists in 1988.

The precautionary principle would also have blocked the development of nuclear technology.  It was spectacularly stupid to build 440 nuclear reactors before the wizards had a plan for storing the wastes, which remain highly toxic for more than 100,000 years.  By 2073, all of these reactors will be far beyond their designed life expectancy.  Decommissioning can take decades, and it can cost more than the original construction.  If the 440 reactors are not decommissioned before the grid shuts down, each will do a lively impersonation of Fukushima, and spew deadly radiation forever.  Or maybe they will be disastrously decommissioned by war, earthquakes, terrorists, or economic meltdown.

Imagine a graph that spans 4,000 years, from A.D. 1 to 4000.  The trend line is fairly flat, except for a brief 200-year period in the middle, which looks like a tall spike, as narrow and sharp as an icicle.  As I write in 2014, we’re very close to the tip of this icicle.  This spike is the petroleum bubble, and its trend line is nearly the same as the bubbles of food production, human population, and resource extraction.  What’s important to grasp here is that the way of life we consider normal is an extreme deviation in the 200,000-year human journey.  It’s a temporary abnormality, and it can never again be repeated.

Oil production is quite close to peak.  The huge deposits are past peak.  Today we are extracting oil from lean, challenging deposits, and the output is expensive.  Costs will rise, production will decline, and economies will stumble until Game Over, which seems likely well before 2050.  Industrial agriculture has an expiration date.  (See The Coming Famine by Julian Cribb.)

Unfortunately, after the peak, our carbon problems are not going to fade away in a hundred years.  The book imagines that the global temperature in 2060, fanned by positive feedback loops, will be 11° C warmer than in 1988.  It’s hard to imagine agriculture surviving such a huge transition, consequently a population of 7.5 billion in 2073 seems impossible.  While the authors wring their hands about rising sea level, Brian Fagan (in The Great Warming) warns that the far greater threat of warming is megadroughts, like one in California that began in A.D. 1250 and lasted 100 years.

The bottom line here is that, even if our enormous carbon emissions were perfectly harmless, we have created such a cornucopia of perplexing predicaments that the coming years are certain to be exciting and memorable.  By definition, an unsustainable way of life can only be temporary.  It’s fun to dream, but I have a hunch that reality may not fully cooperate with the story’s imaginary hope and optimism.  Reality bats last.

Oreskes, Naomi and Conway, Erik M., The Collapse of Western Civilization: A View from the Future, Columbia University Press, New York, 2014.